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Poisson response variables
The following are examples of scenarios with Poisson response
variables:

Are the number of motorcycle deaths in a given year related to a
state’s helmet laws?

Does the number of employers conducting on-campus interviews
during a year differ for public and private colleges?

Does the daily number of asthma-related visits to an Emergency
Room differ depending on air pollution indices?

Has the number of deformed fish in randomly selected Minnesota
lakes been affected by changes in trace minerals in the water over
the last decade? 3

Poisson Distribution
If  follows a Poisson distribution, thenY

P(Y = y) = y = 0, 1, 2, …
exp{−λ}λy

y!
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Poisson Distribution
If  follows a Poisson distribution, then

Features of the Poisson distribution

Mean and variance are equal 

Distribution tends to be skewed right, especially when the mean is
small

If the mean is larger, it can be approximated by a Normal
distribution

Y

P(Y = y) = y = 0, 1, 2, …
exp{−λ}λy

y!

(λ)
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Simulated Poisson distributions
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Simulated Poisson distributions
Mean Variance

lambda=2 2.00740 2.015245

lambda=5 4.99130 4.968734

lambda=20 19.99546 19.836958

lambda=100 100.02276 100.527647
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Poisson Regression
We want  to be a function of predictor variables λ , … ,x1 xp
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Poisson Regression
We want  to be a function of predictor variables 

Why is a multiple linear regression model not appropriate?

λ , … ,x1 xp
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Poisson Regression
We want  to be a function of predictor variables 

Why is a multiple linear regression model not appropriate?

 must be greater than or equal to 0 for any combination of
predictor variables

Constant variance assumption will be violated!

λ , … ,x1 xp

λ
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Multiple linear regression vs. Poisson

Image from: Broadening Your Statistical Horizons
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Poisson Regression
If the observed values  are Poisson, then we can model using a
Poisson regression model of the form

Yi

log( ) = + + + ⋯ +λi β0 β1x1i β2x2i βpxpi
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Interpreting Model Coefficients
Slope, :

Quantitative Predictor: When  increases by one unit, the mean
of  is expected to multiply by a factor of , (holding all
else constant).

Categorical Predictor: The mean of  for category  is expected to
be  times the mean of  for the baseline category,
(holding all else constant).

βj

xj

y exp{ }βj

y k
exp{ }βj y
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Intercept, : When all of the predictors equal 0, the mean of  is
expected to be .
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Example: Household size in the Philippines
The data come from the 2015 Family Income and Expenditure Survey
conducted by the Philippine Statistics Authority.

Goal: We want to use the data to understand the relationship between
the age of the head of the household and the number of people in
their household.

Variables

age: the age of the head of household

total: the number of people in the household other than the head
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Exploratory data analysis
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Exploratory data analysis
Let's examine a plot of the log-transformed mean number of people in
the household by age
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Exploratory data analysis
Let's examine a plot of the log-transformed mean number of people in
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Number in household vs. age

term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

model1 <- glm(total ~ ageCent, data = hh, family = "poisson")
tidy(model1, conf.int = T) %>%
  kable(digits = 3)

log( ) = 1.303 − 0.0047 × ageCenttotal
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
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Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003
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Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

For each additional year older the head of the household is, we expect
the mean number in the house to multiply by a factor of 0.995
(exp(-0.0047)).
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Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

For each additional year older the head of the household is, we expect
the mean number in the house to multiply by a factor of 0.995
(exp(-0.0047)).

For households with a head of the household who is 52.657 years old,
we expect the mean number of people in the household to be 3.68
(exp(1.303)).
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Drop-In-Deviance Test
We can use a drop-in-deviance test to compare nested models (similar
to logistic regression).

Let's try adding ageCent^2 to the model.

anova(model1, model2, test = "Chisq")

model1 <- glm(total ~ ageCent, data = hh, family = "poisson")
model2 <- glm(total ~ ageCent + I(ageCent^2),
              data = hh, family = "poisson")

: = 0 vs.  : ≠ 0H0 βageCent2 Ha βageCent2
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Drop-In-Deviance Test
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1496 2330.729 NA NA NA

1495 2198.533 1 132.197 0
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Drop-In-Deviance Test
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1496 2330.729 NA NA NA

1495 2198.533 1 132.197 0

The p-value is small, so we reject . We will include ageCent^2 to the
model.

H0
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Final model
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.436 0.017 82.339 0 1.402 1.470

ageCent -0.004 0.001 -3.584 0 -0.006 -0.002

I(ageCent^2) -0.001 0.000 -10.938 0 -0.001 -0.001
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Model Assumptions
1. Poisson Response: The response follows a Poisson distribution for

each level of the predictor.

2. Independence: The observations are independent of one another.

3. Mean = variance: The mean value of the response equals the
variance of the response for each level of the predictor.

4. Linearity:  is a linear function of the predictors.log(λ)

20

Poisson response
Let's check the first assumption by looking at the distribution of the
response for groups of the predictor.

hh <- hh %>%
  mutate(age_group = cut(age, breaks = seq(15, 100, 5))

21

Poisson response

This condition is satisfied based on the overall distribution of the
response (from the EDA) and the distribution of the response by age
group.
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Independence
We don't have much information about how the households were
selected for the survey.

If the households were not selected randomly but rather groups of
household were selected from different areas with different customs
about living arrangements, then the independence assumption would
be violated.
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Mean = variance
Let's look at the mean and variance for each age group.

## # A tibble: 10 x 4
##    age_group mean_total var_total     n
##    <fct>          <dbl>     <dbl> <int>
##  1 (15,20]         1.67     0.667     6
##  2 (20,25]         2.17     1.56     18
##  3 (25,30]         2.92     1.41     49
##  4 (30,35]         3.44     2.19    108
##  5 (35,40]         3.84     3.57    158
##  6 (40,45]         4.23     4.44    175
##  7 (45,50]         4.49     6.40    194
##  8 (50,55]         4.01     5.25    188
##  9 (55,60]         3.81     6.53    145
## 10 (60,65]         3.71     6.20    153 24

Mean = variance
## # A tibble: 6 x 4
##   age_group mean_total var_total     n
##   <fct>          <dbl>     <dbl> <int>
## 1 (65,70]         3.34      8.00   115
## 2 (70,75]         2.74      6.75    91
## 3 (75,80]         2.53      4.97    57
## 4 (80,85]         2.23      3.15    30
## 5 (85,90]         2.56      7.03     9
## 6 (90,95]         1         2        2
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Mean = variance
## # A tibble: 6 x 4
##   age_group mean_total var_total     n
##   <fct>          <dbl>     <dbl> <int>
## 1 (65,70]         3.34      8.00   115
## 2 (70,75]         2.74      6.75    91
## 3 (75,80]         2.53      4.97    57
## 4 (80,85]         2.23      3.15    30
## 5 (85,90]         2.56      7.03     9
## 6 (90,95]         1         2        2

It appears the assumption is violated in some age groups; however, the
violations are small enough that we can proceed.
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Linearity

The raw residual for the  observation, , is difficult to interpret
since the variance is equal to the mean in the Poisson distribution.

ith −yi λ ̂ 
i
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Linearity

The raw residual for the  observation, , is difficult to interpret
since the variance is equal to the mean in the Poisson distribution.

Instead, we can analyze a standardized residual called the Pearson
residual.

ith −yi λ ̂ 
i

=ri

−yi λ ̂ 
i

λ ̂ 
i

‾‾√
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Linearity

The raw residual for the  observation, , is difficult to interpret
since the variance is equal to the mean in the Poisson distribution.

Instead, we can analyze a standardized residual called the Pearson
residual.

We will examine a plot of the Pearson residuals versus the predicted
values to check the linearity assumption.

ith −yi λ ̂ 
i

=ri

−yi λ ̂ 
i

λ ̂ 
i

‾‾√
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augment function

hh_aug <- augment(model2, type.predict = "response", 
                  type.residuals = "pearson")
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Linearity condition
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Linearity condition

There is no distinguishable pattern in the residuals, so the linearity
assumption is satisfied.
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References
These slides draw material from Chapter 4 of Beyond Multiple Linear
Regression.
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Poisson response variables
The following are examples of scenarios with Poisson response
variables:

Are the number of motorcycle deaths in a given year related to a
state’s helmet laws?

Does the number of employers conducting on-campus interviews
during a year differ for public and private colleges?

Does the daily number of asthma-related visits to an Emergency
Room differ depending on air pollution indices?

Has the number of deformed fish in randomly selected Minnesota
lakes been affected by changes in trace minerals in the water over
the last decade? 3
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Poisson Distribution
If  follows a Poisson distribution, then

Features of the Poisson distribution

Mean and variance are equal 

Distribution tends to be skewed right, especially when the mean is
small

If the mean is larger, it can be approximated by a Normal
distribution
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Simulated Poisson distributions
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Simulated Poisson distributions
Mean Variance

lambda=2 2.00740 2.015245

lambda=5 4.99130 4.968734

lambda=20 19.99546 19.836958

lambda=100 100.02276 100.527647
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Poisson Regression
We want  to be a function of predictor variables 

Why is a multiple linear regression model not appropriate?

 must be greater than or equal to 0 for any combination of
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Constant variance assumption will be violated!
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Multiple linear regression vs. Poisson
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Poisson Regression
If the observed values  are Poisson, then we can model using a
Poisson regression model of the form

Yi

log( ) = + + + ⋯ +λi β0 β1x1i β2x2i βpxpi
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Interpreting Model Coefficients
Slope, :

Quantitative Predictor: When  increases by one unit, the mean
of  is expected to multiply by a factor of , (holding all
else constant).

Categorical Predictor: The mean of  for category  is expected to
be  times the mean of  for the baseline category,
(holding all else constant).
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Example: Household size in the Philippines
The data come from the 2015 Family Income and Expenditure Survey
conducted by the Philippine Statistics Authority.

Goal: We want to use the data to understand the relationship between
the age of the head of the household and the number of people in
their household.

Variables

age: the age of the head of household

total: the number of people in the household other than the head
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Exploratory data analysis
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Number in household vs. age

term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

model1 <- glm(total ~ ageCent, data = hh, family = "poisson")
tidy(model1, conf.int = T) %>%
  kable(digits = 3)

log( ) = 1.303 − 0.0047 × ageCenttotal
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

15



Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

16



Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

For each additional year older the head of the household is, we expect
the mean number in the house to multiply by a factor of 0.995
(exp(-0.0047)).

16



Interpretations
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 1.303 0.013 96.647 0 1.276 1.329

ageCent -0.005 0.001 -4.832 0 -0.006 -0.003

For each additional year older the head of the household is, we expect
the mean number in the house to multiply by a factor of 0.995
(exp(-0.0047)).

For households with a head of the household who is 52.657 years old,
we expect the mean number of people in the household to be 3.68
(exp(1.303)).

16



Drop-In-Deviance Test
We can use a drop-in-deviance test to compare nested models (similar
to logistic regression).

Let's try adding ageCent^2 to the model.

anova(model1, model2, test = "Chisq")

model1 <- glm(total ~ ageCent, data = hh, family = "poisson")
model2 <- glm(total ~ ageCent + I(ageCent^2),
              data = hh, family = "poisson")

: = 0 vs.  : ≠ 0H0 βageCent2 Ha βageCent2
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Drop-In-Deviance Test
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1496 2330.729 NA NA NA

1495 2198.533 1 132.197 0
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Final model
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Model Assumptions
1. Poisson Response: The response follows a Poisson distribution for

each level of the predictor.

2. Independence: The observations are independent of one another.

3. Mean = variance: The mean value of the response equals the
variance of the response for each level of the predictor.

4. Linearity:  is a linear function of the predictors.log(λ)
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Poisson response
Let's check the first assumption by looking at the distribution of the
response for groups of the predictor.

hh <- hh %>%
  mutate(age_group = cut(age, breaks = seq(15, 100, 5))
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Poisson response

This condition is satisfied based on the overall distribution of the
response (from the EDA) and the distribution of the response by age
group.
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Independence
We don't have much information about how the households were
selected for the survey.

If the households were not selected randomly but rather groups of
household were selected from different areas with different customs
about living arrangements, then the independence assumption would
be violated.
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Mean = variance
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Linearity

The raw residual for the  observation, , is difficult to interpret
since the variance is equal to the mean in the Poisson distribution.

ith −yi λ ̂ 
i
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residual.
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Linearity

The raw residual for the  observation, , is difficult to interpret
since the variance is equal to the mean in the Poisson distribution.

Instead, we can analyze a standardized residual called the Pearson
residual.

We will examine a plot of the Pearson residuals versus the predicted
values to check the linearity assumption.
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augment function

hh_aug <- augment(model2, type.predict = "response", 
                  type.residuals = "pearson")
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Linearity condition
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Linearity condition

There is no distinguishable pattern in the residuals, so the linearity
assumption is satisfied.
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References
These slides draw material from Chapter 4 of Beyond Multiple Linear
Regression.
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