Multinomial Logistic Regression Prediction + model selection + conditions

<u>Click for PDF of slides</u>

Topics

- Predictions
- Model selection
- Checking conditions

NHANES Data

- <u>National Health and Nutrition Examination Survey</u> is conducted by the National Center for Health Statistics (NCHS)
- The goal is to "assess the health and nutritional status of adults and children in the United States"
- This survey includes an interview and a physical examination

Health Rating vs. Age & Physical Activity

- Question: Can we use a person's age and whether they do regular physical activity to predict their self-reported health rating?
- We will analyze the following variables:
 - HealthGen: Self-reported rating of participant's health in general. Excellent, Vgood, Good, Fair, or Poor.
 - Age: Age at time of screening (in years). Participants 80 or older were recorded as 80.
 - PhysActive: Participant does moderate to vigorous-intensity sports, fitness or recreational activities

Model in R

y.level	term	estimate	std.error	statistic	p.value
Vgood	(Intercept)	1.205	0.145	8.325	0.000
Vgood	Age	0.001	0.002	0.369	0.712
Vgood	PhysActiveYes	-0.321	0.093	-3.454	0.001
Good	(Intercept)	1.948	0.141	13.844	0.000
Good	Age	-0.002	0.002	-0.977	0.329
Good	PhysActiveYes	-1.001	0.090	-11.120	0.000
Fair	(Intercept)	0.915	0.164	5.566	0.000
Fair	Age	0.003	0.003	1.058	0.290
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.000
Poor	(Intercept)	-1.521	0.290	-5.238	0.000
Door	٨٥٥	0 0 2 2		1 5 2 2	0 000

Predictions

Calculating probabilities

For categories $2, \ldots, K$, the probability that the i^{th} observation is in the j^{th} category is

$$\hat{\pi}_{ij} = \frac{\exp\{\hat{\beta}_{0j} + \hat{\beta}_{1j}x_{i1} + \dots + \hat{\beta}_{pj}x_{ip}\}}{1 + \sum_{k=2}^{K} \exp\{\hat{\beta}_{0k} + \hat{\beta}_{1k}x_{i1} + \dots \hat{\beta}_{pk}x_{ip}\}}$$

For the baseline category, k = 1, we calculate the probability $\hat{\pi}_{i1}$ as

$$\hat{\pi}_{i1} = 1 - \sum_{k=2}^{K} \hat{\pi}_{ik}$$

NHANES: Predicted probabilities

A tibble: 5 x 6 Excellent Vgood Good Fair Poor obs_num ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## ## 1 0.0705 0.244 0.451 0.198 0.0366 1010.0426 ## 2 $0.0702 \ 0.244 \ 0.441 \ 0.202$ 102 ## 3 $0.0696 \ 0.244 \ 0.427 \ 0.206$ 0.0527 103 ## 4 $0.0696 \ 0.244 \ 0.427 \ 0.206 \ 0.0527$ 104 ## 5 0.155 0.393 0.359 0.0861 0.00662 105

Add predictions to original data

Rows: 6,710

STA 210

```
## Columns: 10
## $ obs_num <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
## $ HealthGen <fct> Good, Good, Good, Good, Vgood, Vgood, Vg
               <int> 34, 34, 34, 49, 45, 45, 45, 66, 58, 54,
## $ Age
## $ PhysActive
               <fct> No, No, No, No, Yes, Yes, Yes, Yes, Yes,
## $ Education <fct> High School, High School, High School, S
## $ Excellent <dbl> 0.07069715, 0.07069715, 0.07069715, 0.07
## $ Vgood
               <dbl> 0.2433979, 0.2433979, 0.2433979, 0.24442
## $ Good
               <dbl> 0.4573727, 0.4573727, 0.4573727, 0.43725
                <dbl> 0.19568909. 0.19568909. 0.19568909. 0.20
## $ Fair
```

Actual vs. Predicted Health Rating

- We can use our model to predict a person's perceived health rating given their age and whether they exercise
- For each observation, the predicted perceived health rating is the category with the highest predicted probability

Actual vs. Predicted Health Rating

health_m_aug %>%
 count(HealthGen, pred_health, .drop = FALSE) %>%
 pivot_wider(names_from = pred_health, values_from = n)

##	#	A tibble:	5 x 6				
##		HealthGen	Excellent	Vgood	Good	Fair	Poor
##		<fct></fct>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
##	1	Excellent	\odot	550	223	Θ	\odot
##	2	Vgood	\odot	1376	785	Θ	\odot
##	3	Good	\odot	1255	1399	Θ	\odot
##	4	Fair	\odot	300	642	Θ	\odot
##	5	Poor	\odot	24	156	\odot	\odot

Why do you think no observations were predicted to have a rating of "Excellent", "Fair", or "Poor"?

Why do you think no observations were predicted to have a rating of "Excellent", "Fair", or "Poor"?

Self-reported rating of overall health

Model selection

Comparing Nested Models

- Suppose there are two models:
 - Reduced Model includes predictors x_1, \ldots, x_q
 - Full Model includes predictors $x_1, \ldots, x_q, x_{q+1}, \ldots, x_p$
- We want to test the hypotheses

$$H_0: \beta_{q+1} = \dots = \beta_p = 0$$

$$H_a: \text{ at least } 1 \beta_j \text{ is not} 0$$

 To do so, we will use the Drop-in-Deviance test (very similar to logistic regression)

- We consider adding the participants' **Education** level to the model.
 - Education takes values 8thGrade, 9-11thGrade, HighSchool,
 SomeCollege, and CollegeGrad
- Models we're testing:
 - Reduced Model: Age, PhysActive
 - Full Model: Age, PhysActive, Education

$$H_0: \beta_{9-11thGrade} = \beta_{HighSchool} = \beta_{SomeCollege} = \beta_{CollegeGrad} = 0$$

$$H_a: \text{ at least one } \beta_j \text{ is not equal to } 0$$

 $H_0: \beta_{9-11thGrade} = \beta_{HighSchool} = \beta_{SomeCollege} = \beta_{CollegeGrad} = 0$ $H_a:$ at least one β_j is not equal to 0

anova(model_red, model_full, test = "Chisq") %>%
kable(format = "markdown")

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
Age + PhysActive	25848	16994.23		NA	NA	NA
Age + PhysActive + Education	25832	16505.10	1 vs 2	16	489.1319	0

anova(model_red, model_full, test = "Chisq") %>%
kable(format = "markdown")

Model	Resid. df	Resid. Dev	Test	Df	LR stat.	Pr(Chi)
Age + PhysActive	25848	16994.23		NA	NA	NA
Age + PhysActive + Education	25832	16505.10	1 vs 2	16	489.1319	0

At least one coefficient associated with **Education** is non-zero. Therefore, we will include **Education** in the model.

Model with Education

STA 210

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Vgood	(Intercept)	0.582	0.301	1.930	0.054	-0.009	1.173
Vgood	Age	0.001	0.003	0.419	0.675	-0.004	0.006
Vgood	PhysActiveYes	-0.264	0.099	-2.681	0.007	-0.457	-0.071
Vgood	Education9 - 11th Grade	0.768	0.308	2.493	0.013	0.164	1.372
Vgood	EducationHigh School	0.701	0.280	2.509	0.012	0.153	1.249
Vgood	EducationSome College	0.788	0.271	2.901	0.004	0.256	1.320
Vgood	EducationCollege Grad	0.408	0.268	1.522	0.128	-0.117	0.933
Cood	(Intercept)	20/11	0 272	7 5 1 2	0 000	1 500	2 5 7 2

19

Compare NHANES models using AIC

glance(model_red)\$AIC

[1] 17018.23

glance(model_full)\$AIC

[1] 16561.1

Compare NHANES models using AIC

glance(model_red)\$AIC

[1] 17018.23

glance(model_full)\$AIC

[1] 16561.1

Use the **step()** function to do model selection with AIC as the selection criteria

Checking conditions

Assumptions for multinomial logistic regression

We want to check the following assumptions for the multinomial logistic regression model:

- 1. **Linearity**: Is there a linear relationship between the log-odds and the predictor variables?
- 2. **Randomness**: Was the sample randomly selected? Or can we reasonably treat it as random?
- 3. **Independence**: There is no obvious relationship between observations

Similar to logistic regression, we will check linearity by examining empirical logit plots between each level of the response and the quantitative predictor variables.

```
nhanes_adult <- nhanes_adult %>%
mutate(Excellent = factor(if_else(HealthGen == "Excellent", "1", "@
            Vgood = factor(if_else(HealthGen == "Vgood", "1", "0")),
            Good = factor(if_else(HealthGen == "Good", "1", "0")),
            Fair = factor(if_else(HealthGen == "Fair", "1", "0")),
            Poor = factor(if_else(HealthGen == "Poor", "1", "0"))
)
```


library(Stat2Data)

```
par(mfrow = c(2,1))
emplogitplot1(Excellent ~ Age, data = nhanes_adult, ngroups = 5, mair
emplogitplot1(Vgood ~ Age, data = nhanes_adult, ngroups = 5, main = '
```


par(mfrow = c(2,1))
emplogitplot1(Good ~ Age, data = nhanes_adult, ngroups = 5, main = "(
emplogitplot1(Fair ~ Age, data = nhanes_adult, ngroups = 5, main = "F

Age

emplogitplot1(Poor ~ Age, data = nhanes_adult, ngroups = 5, main = "F

emplogitplot1(Poor ~ Age, data = nhanes_adult, ngroups = 5, main = "F

The linearity condition is satisfied. There is a linear relationship between the empirical logit and the quantitative predictor variable,

Checking randomness

We can check the randomness condition based on the context of the data and how the observations were collected.

- Was the sample randomly selected?
- If the sample was not randomly selected, ask whether there is reason to believe the observations in the sample differ systematically from the population of interest.

Checking randomness

We can check the randomness condition based on the context of the data and how the observations were collected.

- Was the sample randomly selected?
- If the sample was not randomly selected, ask whether there is reason to believe the observations in the sample differ systematically from the population of interest.

The randomness condition is satisfied. We do not have reason to believe that the participants in this study differ systematically from adults in the U.S..

Checking independence

We can check the independence condition based on the context of the data and how the observations were collected.

Independence is most often violated if the data were collected over time or there is a strong spatial relationship between the observations.

Checking independence

We can check the independence condition based on the context of the data and how the observations were collected.

Independence is most often violated if the data were collected over time or there is a strong spatial relationship between the observations.

The independence condition is satisfied. It is reasonable to conclude that the participants' health and behavior characteristics are independent of one another.

- Predictions
- Model selection
- Checking conditions

