Introduction

Prof. Maria Tackett



#### **<u>Click for PDF of slides</u>**



# Topics

- Introduce multinomial logistic regression
- Interpret model coefficients
- Inference for a coefficient  $\beta_{jk}$



# Generalized Linear Models (GLM)

- In practice, there are many different types of response variables including:
  - Binary: Win or Lose
  - Nominal: Democrat, Republican or Third Party candidate
  - Ordered: Movie rating (1 5 stars)
  - and others...

STA 210

- These are all examples of generalized linear models, a broader class of models that generalize the multiple linear regression model
- See <u>Generalized Linear Models: A Unifying Theory</u> for more details about GLMs

4

• Given  $P(y_i = 1 | x_i) = \hat{\pi}_i$  and  $P(y_i = 0 | x_i) = 1 - \hat{\pi}_i$ 

$$\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• We can calculate  $\hat{\pi}_i$  by solving the logit equation:

$$\hat{\pi}_{i} = \frac{\exp\{\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}\}}{1 + \exp\{\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}\}}$$



Suppose we consider y = 0 the **baseline category** such that

$$P(y_i = 1 | x_i) = \hat{\pi}_{i1}$$
 and  $P(y_i = 0 | x_i) = \hat{\pi}_{i0}$ 



Suppose we consider y = 0 the **baseline category** such that

$$P(y_i = 1 | x_i) = \hat{\pi}_{i1}$$
 and  $P(y_i = 0 | x_i) = \hat{\pi}_{i0}$ 

Then the logistic regression model is

$$\log\left(\frac{\hat{\pi}_{i1}}{1-\hat{\pi}_{i1}}\right) = \log\left(\frac{\hat{\pi}_{i1}}{\hat{\pi}_{i0}}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$



Suppose we consider y = 0 the **baseline category** such that

$$P(y_i = 1 | x_i) = \hat{\pi}_{i1}$$
 and  $P(y_i = 0 | x_i) = \hat{\pi}_{i0}$ 

Then the logistic regression model is

$$\log\left(\frac{\hat{\pi}_{i1}}{1-\hat{\pi}_{i1}}\right) = \log\left(\frac{\hat{\pi}_{i1}}{\hat{\pi}_{i0}}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

**Slope**,  $\hat{\beta}_1$ : When *x* increases by one unit, the odds of y = 1 versus the baseline y = 0 are expected to multiply by a factor of  $\exp\{\hat{\beta}_1\}$ 

**Intercept,**  $\hat{\beta}_0$ : When x = 0, the predicted odds of y = 1 versus the baseline y = 0 are  $\exp{\{\hat{\beta}_0\}}$ 

#### Multinomial response variable

- Suppose the response variable y is categorical and can take values  $1, 2, \ldots, K$  such that (K > 2)
- Multinomial Distribution:

$$P(y = 1) = \pi_1, P(y = 2) = \pi_2, \dots, P(y = K) = \pi_K$$
  
such that  $\sum_{k=1}^{K} \pi_k = 1$ 



• If we have an explanatory variable *x*, then we want to fit a model such that  $P(y = k) = \pi_k$  is a function of *x* 



- If we have an explanatory variable *x*, then we want to fit a model such that  $P(y = k) = \pi_k$  is a function of *x*
- Choose a baseline category. Let's choose y = 1. Then,

$$\log\left(\frac{\pi_{ik}}{\pi_{i1}}\right) = \beta_{0k} + \beta_{1k} x_i$$

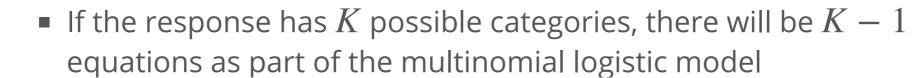


STA 210

- If we have an explanatory variable *x*, then we want to fit a model such that  $P(y = k) = \pi_k$  is a function of *x*
- Choose a baseline category. Let's choose y = 1. Then,

$$\log\left(\frac{\pi_{ik}}{\pi_{i1}}\right) = \beta_{0k} + \beta_{1k} x_i$$

In the multinomial logistic model, we have a separate equation for each category of the response relative to the baseline category



- Suppose we have a response variable y that can take three possible outcomes that are coded as "A", "B", "C"
- Let "A" be the baseline category. Then

$$\log\left(\frac{\pi_{iB}}{\pi_{iA}}\right) = \beta_{0B} + \beta_{1B}x_i$$
$$\log\left(\frac{\pi_{iC}}{\pi_{iA}}\right) = \beta_{0C} + \beta_{1C}x_i$$



#### **NHANES** Data

- <u>National Health and Nutrition Examination Survey</u> is conducted by the National Center for Health Statistics (NCHS)
- The goal is to "assess the health and nutritional status of adults and children in the United States"
- This survey includes an interview and a physical examination



#### **NHANES** Data

- We will use the data from the **NHANES** R package
- Contains 75 variables for the 2009 2010 and 2011 2012 sample years
- The data in this package is modified for educational purposes and should **not** be used for research
- Original data can be obtained from the <u>NCHS website</u> for research purposes
- Type **?NHANES** in console to see list of variables and definitions



## Health Rating vs. Age & Physical Activity

- Question: Can we use a person's age and whether they do regular physical activity to predict their self-reported health rating?
- We will analyze the following variables:
  - HealthGen: Self-reported rating of participant's health in general. Excellent, Vgood, Good, Fair, or Poor.
  - Age: Age at time of screening (in years). Participants 80 or older were recorded as 80.
  - PhysActive: Participant does moderate to vigorous-intensity sports, fitness or recreational activities

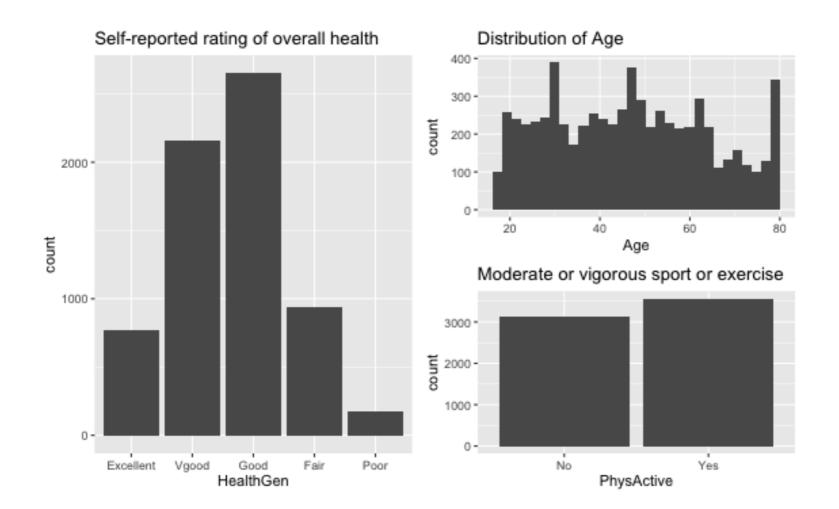


#### The data

- ## Rows: 6,710
- ## Columns: 4
- ## \$ HealthGen <fct> Good, Good, Good, Good, Vgood, Vgood, Vg
- ## \$ Age <int> 34, 34, 34, 49, 45, 45, 45, 66, 58, 54,
- ## \$ PhysActive <fct> No, No, No, No, Yes, Yes, Yes, Yes, Yes,
- ## \$ obs\_num <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1

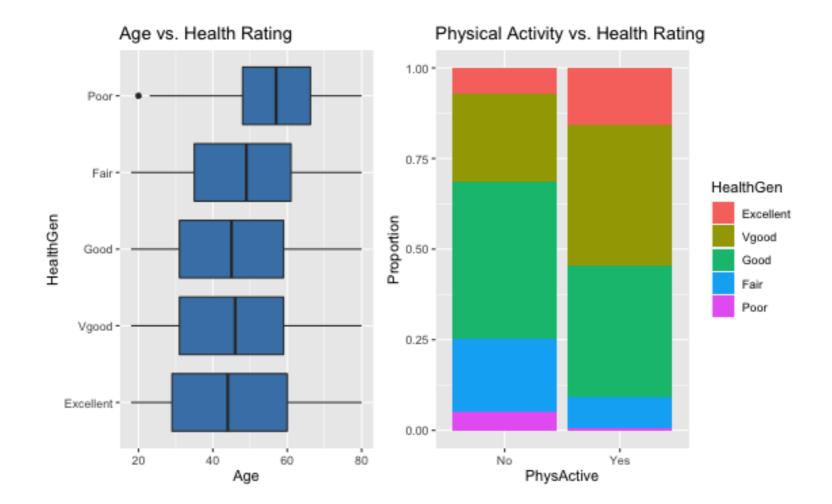


## **Exploratory data analysis**





## **Exploratory data analysis**





## Model in R

Use the multinom() function in the nnet package

Put results = "hide" in the code chunk header to suppress convergence output



## **Output results**

tidy(health\_m, conf.int = TRUE, exponentiate = FALSE) %
kable(digits = 3, format = "markdown")



# Model output

STA 210

| y.level | term          | estimate | std.error | statistic | p.value | conf.low | conf.high |
|---------|---------------|----------|-----------|-----------|---------|----------|-----------|
| Vgood   | (Intercept)   | 1.205    | 0.145     | 8.325     | 0.000   | 0.922    | 1.489     |
| Vgood   | Age           | 0.001    | 0.002     | 0.369     | 0.712   | -0.004   | 0.006     |
| Vgood   | PhysActiveYes | -0.321   | 0.093     | -3.454    | 0.001   | -0.503   | -0.139    |
| Good    | (Intercept)   | 1.948    | 0.141     | 13.844    | 0.000   | 1.672    | 2.223     |
| Good    | Age           | -0.002   | 0.002     | -0.977    | 0.329   | -0.007   | 0.002     |
| Good    | PhysActiveYes | -1.001   | 0.090     | -11.120   | 0.000   | -1.178   | -0.825    |
| Fair    | (Intercept)   | 0.915    | 0.164     | 5.566     | 0.000   | 0.592    | 1.237     |
| Fair    | Age           | 0.003    | 0.003     | 1.058     | 0.290   | -0.003   | 0.009     |
| Fair    | PhysActiveYes | -1.645   | 0.107     | -15.319   | 0.000   | -1.856   | -1.435    |
| Poor    | (Intercept)   | -1.521   | 0.290     | -5.238    | 0.000   | -2.090   | -0.952    |
| Door    | ٨٥٥           | 0 0 2 2  |           | 1 500     |         | 0 012    | 0 022     |

#### Fair vs. Excellent Health

The baseline category for the model is **Excellent**.



#### Fair vs. Excellent Health

The baseline category for the model is **Excellent**.

The model equation for the log-odds a person rates themselves as having "Fair" health vs. "Excellent" is

$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$



$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

For each additional year in age, the odds a person rates themselves as having fair health versus excellent health are expected to multiply by 1.003 (exp(0.003)), holding physical activity constant.



$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

For each additional year in age, the odds a person rates themselves as having fair health versus excellent health are expected to multiply by 1.003 (exp(0.003)), holding physical activity constant.

The odds a person who does physical activity will rate themselves as having fair health versus excellent health are expected to be 0.193 (exp(-1.645 )) times the odds for a person who doesn't do physical activity, holding age constant.



$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

The odds a 0 year old person who doesn't do physical activity rates themselves as having fair health vs. excellent health are 2.497 (exp(0.915)).



$$\log\left(\frac{\hat{\pi}_{Fair}}{\hat{\pi}_{Excellent}}\right) = 0.915 + 0.003 \text{ age} - 1.645 \text{ PhysActive}$$

The odds a 0 year old person who doesn't do physical activity rates themselves as having fair health vs. excellent health are 2.497 (exp(0.915)).

▲ Need to mean-center age for the intercept to have a meaningful interpretation!



# Hypothesis test for $\beta_{jk}$

The test of significance for the coefficient  $\beta_{jk}$  is

Hypotheses: 
$$H_0$$
:  $\beta_{jk} = 0$  vs  $H_a$ :  $\beta_{jk} \neq 0$ 

**Test Statistic**:

$$z = \frac{\hat{\beta}_{jk} - 0}{SE(\hat{\beta}_{jk})}$$

P-value: P(|Z| > |z|),

where  $Z \sim N(0, 1)$ , the Standard Normal distribution



# Confidence interval for $\beta_{jk}$

• We can calculate the **C% confidence interval** for  $\beta_{jk}$  using the following:

$$\hat{\beta}_{jk} \pm z^* SE(\hat{\beta}_{jk})$$

where  $z^*$  is calculated from the N(0, 1) distribution

We are *C*% confident that for every one unit change in  $x_j$ , the odds of y = k versus the baseline will multiply by a factor of  $\exp{\{\hat{\beta}_{jk} - z^*SE(\hat{\beta}_{jk})\}}$  to  $\exp{\{\hat{\beta}_{jk} + z^*SE(\hat{\beta}_{jk})\}}$ , holding all else constant.



# Interpreting confidence intervals for $\beta_{jk}$

| y.level | term          | estimate | std.error | statistic | p.value | conf.low | conf.high |
|---------|---------------|----------|-----------|-----------|---------|----------|-----------|
| Fair    | (Intercept)   | 0.915    | 0.164     | 5.566     | 0.00    | 0.592    | 1.237     |
| Fair    | Age           | 0.003    | 0.003     | 1.058     | 0.29    | -0.003   | 0.009     |
| Fair    | PhysActiveYes | -1.645   | 0.107     | -15.319   | 0.00    | -1.856   | -1.435    |



# Interpreting confidence intervals for $\beta_{jk}$

| y.level | term          | estimate | std.error | statistic | p.value | conf.low | conf.high |
|---------|---------------|----------|-----------|-----------|---------|----------|-----------|
| Fair    | (Intercept)   | 0.915    | 0.164     | 5.566     | 0.00    | 0.592    | 1.237     |
| Fair    | Age           | 0.003    | 0.003     | 1.058     | 0.29    | -0.003   | 0.009     |
| Fair    | PhysActiveYes | -1.645   | 0.107     | -15.319   | 0.00    | -1.856   | -1.435    |

We are 95% confident, that for each additional year in age, the odds a person rates themselves as having fair health versus excellent health will multiply by 0.997 (exp(-0.003)) to 1.009 (exp(0.009)), holding physical activity constant.



# Interpreting confidence intervals for $\beta_{jk}$

| y.level | term          | estimate | std.error | statistic | p.value | conf.low | conf.high |
|---------|---------------|----------|-----------|-----------|---------|----------|-----------|
| Fair    | (Intercept)   | 0.915    | 0.164     | 5.566     | 0.00    | 0.592    | 1.237     |
| Fair    | Age           | 0.003    | 0.003     | 1.058     | 0.29    | -0.003   | 0.009     |
| Fair    | PhysActiveYes | -1.645   | 0.107     | -15.319   | 0.00    | -1.856   | -1.435    |

We are 95% confident that the odds a person who does physical activity will rate themselves as having fair health versus excellent health are 0.156 (exp(-1.856 )) to 0.238 (exp(-1.435)) times the odds for a person who doesn't do physical activity, holding age constant.



#### Recap

- Introduce multinomial logistic regression
- Interpret model coefficients
- Inference for a coefficient  $\beta_{jk}$

