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Risk of coronary heart disease
This dataset is from an ongoing cardiovascular study on residents of the town
of Framingham, Massachusetts. We want to examine the relationship between
various health characteristics and the risk of having heart disease in the next
10 years.

high_risk: 1 = High risk, 0 = Not high risk

age: Age at exam time (in years)

education: 1 = Some High School; 2 = High School or GED; 3 = Some College
or Vocational School; 4 = College

currentSmoker: 0 = nonsmoker; 1 = smoker
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Modeling risk of coronary heart disease
term estimate std.error statistic p.value conf.low conf.high

(Intercept) -5.385 0.308 -17.507 0.000 -5.995 -4.788

age 0.073 0.005 13.385 0.000 0.063 0.084

education2 -0.242 0.112 -2.162 0.031 -0.463 -0.024

education3 -0.235 0.134 -1.761 0.078 -0.501 0.023

education4 -0.020 0.148 -0.136 0.892 -0.317 0.266

log( ) = −5.385 + 0.073 age − 0.242 ed2 − 0.235 ed3 − 0.020 ed4
π ̂ 

1 − π ̂ 
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Hypothesis test for 

Hypotheses: 

βj

: = 0  vs  : ≠ 0H0 βj Ha βj

5

Hypothesis test for 

Hypotheses: 

Test Statistic:

βj

: = 0  vs  : ≠ 0H0 βj Ha βj

z =
− 0β ̂ 

j

SE
β ̂ 

j

5

Hypothesis test for 

Hypotheses: 

Test Statistic:

P-value: ,

where , the Standard Normal distribution

βj

: = 0  vs  : ≠ 0H0 βj Ha βj
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P(|Z| > |z|)

Z ∼ N(0, 1)
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Confidence interval for 

We can calculate the C% confidence interval for  as the following:

where  is calculated from the  distribution

βj

βj

± Sβ ̂ 
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Confidence interval for 

We can calculate the C% confidence interval for  as the following:

where  is calculated from the  distribution

This is an interval for the change in the log-odds for every one unit
increase in .
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Interpretation in terms of the odds
The change in odds for every one unit increase in .xj

exp{ ± S }β ̂ 
j z

∗

E
β ̂ 

j
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Interpretation in terms of the odds
The change in odds for every one unit increase in .

Interpretation: We are  confident that for every one unit increase in
, the odds multiply by a factor of  to 

, holding all else constant.
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j z
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j
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Let's look at the coefficient for age
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Let's look at the coefficient for age
term estimate std.error statistic p.value conf.low conf.high

(Intercept) -5.385 0.308 -17.507 0.000 -5.995 -4.788
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education3 -0.235 0.134 -1.761 0.078 -0.501 0.023
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2 * pnorm(13.4,lower.tail = FALSE)

## [1] 6.046315e-41
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Let's look at the coefficient for age
term estimate std.error statistic p.value conf.low conf.high

(Intercept) -5.385 0.308 -17.507 0.000 -5.995 -4.788

age 0.073 0.005 13.385 0.000 0.063 0.084

education2 -0.242 0.112 -2.162 0.031 -0.463 -0.024

education3 -0.235 0.134 -1.761 0.078 -0.501 0.023
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Conclusion: The p-value is very small, so we reject . The data provide
sufficient evidence that age is a statistically significant predictor of
whether someone is high risk of having heart disease, after accounting
for education.

H0

13

Comparing models

14

Log likelihood

log L = [ log( ) + (1 − ) log(1 − )]∑
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Log likelihood
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Drop-in-deviance test
Hypotheses:

Test Statistic:
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Drop-in-deviance test
Hypotheses:

Test Statistic:

P-value: ,

calculated using a  distribution with degrees of freedom equal to the
difference in the number of parameters in the full and reduced models

: = ⋯ = = 0H0 βq+1 βp

:  at least 1   is not 0Ha βj

G = (−2 log ) − (−2 log )Lreduced Lfull

P( > G)χ2

χ2
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 distributionχ2
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Should we add currentSmoker to the model?

model_reduced <- glm(high_risk ~ age + education, 
              data = heart, family = "binomial")

model_full <- glm(high_risk ~ age + education + 
                    currentSmoker,
              data = heart, family = "binomial")

20

Should we add currentSmoker to the model?

# Calculate deviance for each model
(dev_reduced <- glance(model_reduced)$deviance)

## [1] 3300.135

(dev_full <- glance(model_full)$deviance)

## [1] 3279.359
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# Calculate deviance for each model
(dev_reduced <- glance(model_reduced)$deviance)

## [1] 3300.135

(dev_full <- glance(model_full)$deviance)

## [1] 3279.359

# Drop-in-deviance test statistic
(test_stat <- dev_reduced - dev_full)

## [1] 20.77589
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Should we add currentSmoker to the model?

# p-value
#1 = number of new model terms in model 2
pchisq(test_stat, 1, lower.tail = FALSE)

## [1] 5.162887e-06
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Should we add currentSmoker to the model?

# p-value
#1 = number of new model terms in model 2
pchisq(test_stat, 1, lower.tail = FALSE)

## [1] 5.162887e-06

Conclusion: The p-value is very small, so we reject . The data provide
sufficient evidence that the coefficient of currentSmoker is not equal
to 0. Therefore, we should add it to the model.

H0
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Drop-in-Deviance test in R
We can use the anova function to conduct this test

Add test = "Chisq" to conduct the drop-in-deviance test

anova(model_reduced, model_full, test = "Chisq") %>%
  tidy()

## # A tibble: 2 x 5
##   Resid..Df Resid..Dev    df Deviance     p.value
##       <dbl>      <dbl> <dbl>    <dbl>       <dbl>
## 1      4130      3300.    NA     NA   NA         
## 2      4129      3279.     1     20.8  0.00000516

23

Model selection
Use AIC or BIC for model selection

AIC = −2 ∗ log L − n log(n) + 2(p + 1)

BIC = −2 ∗ log L − n log(n) + log(n) × (p + 1)
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AIC from glance function
Let's look at the AIC for the model that includes age, education, and
currentSmoker

glance(model_full)$AIC

## [1] 3291.359
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AIC from glance function
Let's look at the AIC for the model that includes age, education, and
currentSmoker

glance(model_full)$AIC

## [1] 3291.359

Calculating AIC

- 2 * glance(model_full)$logLik + 2 * (5 + 1)

## [1] 3291.359

25

Comparing the models using AIC
Let's compare the full and reduced models using AIC.

glance(model_reduced)$AIC

## [1] 3310.135

glance(model_full)$AIC

## [1] 3291.359

Based on AIC, which model would you choose?
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Comparing the models using BIC
Let's compare the full and reduced models using BIC

glance(model_reduced)$BIC

## [1] 3341.772

glance(model_full)$BIC

## [1] 3329.323

Based on BIC, which model would you choose?

27

Logistic regression

Inference
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Risk of coronary heart disease
This dataset is from an ongoing cardiovascular study on residents of the town
of Framingham, Massachusetts. We want to examine the relationship between
various health characteristics and the risk of having heart disease in the next
10 years.

high_risk: 1 = High risk, 0 = Not high risk

age: Age at exam time (in years)

education: 1 = Some High School; 2 = High School or GED; 3 = Some College
or Vocational School; 4 = College

currentSmoker: 0 = nonsmoker; 1 = smoker
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Drop-in-deviance test
Hypotheses:

Test Statistic:

P-value: ,

calculated using a  distribution with degrees of freedom equal to the
difference in the number of parameters in the full and reduced models

: = ⋯ = = 0H0 βq+1 βp

:  at least 1   is not 0Ha βj
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(test_stat <- dev_reduced - dev_full)

## [1] 20.77589
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Should we add currentSmoker to the model?

# p-value
#1 = number of new model terms in model 2
pchisq(test_stat, 1, lower.tail = FALSE)

## [1] 5.162887e-06
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Should we add currentSmoker to the model?

# p-value
#1 = number of new model terms in model 2
pchisq(test_stat, 1, lower.tail = FALSE)

## [1] 5.162887e-06

Conclusion: The p-value is very small, so we reject . The data provide
sufficient evidence that the coefficient of currentSmoker is not equal
to 0. Therefore, we should add it to the model.

H0
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Drop-in-Deviance test in R
We can use the anova function to conduct this test

Add test = "Chisq" to conduct the drop-in-deviance test

anova(model_reduced, model_full, test = "Chisq") %>%
  tidy()

## # A tibble: 2 x 5
##   Resid..Df Resid..Dev    df Deviance     p.value
##       <dbl>      <dbl> <dbl>    <dbl>       <dbl>
## 1      4130      3300.    NA     NA   NA         
## 2      4129      3279.     1     20.8  0.00000516
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Model selection
Use AIC or BIC for model selection

AIC = −2 ∗ log L − n log(n) + 2(p + 1)

BIC = −2 ∗ log L − n log(n) + log(n) × (p + 1)

24



AIC from glance function
Let's look at the AIC for the model that includes age, education, and
currentSmoker

glance(model_full)$AIC

## [1] 3291.359
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AIC from glance function
Let's look at the AIC for the model that includes age, education, and
currentSmoker

glance(model_full)$AIC

## [1] 3291.359

Calculating AIC

- 2 * glance(model_full)$logLik + 2 * (5 + 1)

## [1] 3291.359
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Comparing the models using AIC
Let's compare the full and reduced models using AIC.

glance(model_reduced)$AIC

## [1] 3310.135

glance(model_full)$AIC

## [1] 3291.359

Based on AIC, which model would you choose?
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Comparing the models using BIC
Let's compare the full and reduced models using BIC

glance(model_reduced)$BIC

## [1] 3341.772

glance(model_full)$BIC

## [1] 3329.323

Based on BIC, which model would you choose?
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