Variable transformations

Prof. Maria Tackett

Click here for PDF of slides

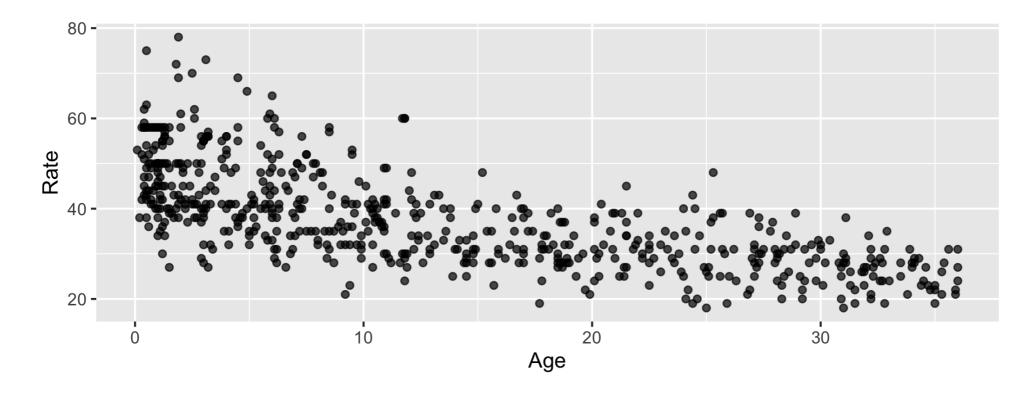
Topics

- Log transformation on the response
- Log transformation on the predictor

Respiratory Rate vs. Age

- A high respiratory rate can potentially indicate a respiratory infection in children. In order to determine what indicates a "high" rate, we first want to understand the relationship between a child's age and their respiratory rate.
- The data contain the respiratory rate for 618 children ages 15 days to 3 years.
- Variables:
 - Age: age in months
 - **Rate**: respiratory rate (breaths per minute)

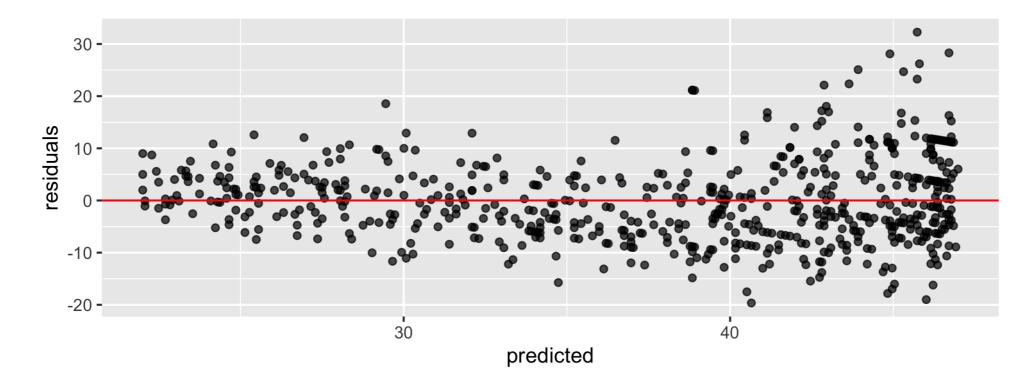
Rate vs. Age



Rate vs. Age

STA 210

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	47.052	0.504	93.317	0	46.062	48.042
Age	-0.696	0.029	-23.684	0	-0.753	-0.638



Log transformation on the response

Need to transform Y

- Typically, a "fan-shaped" residual plot indicates the need for a transformation of the response variable y
 - log(Y) is the most straightforward to interpret

Need to transform Y

- Typically, a "fan-shaped" residual plot indicates the need for a transformation of the response variable y
 - log(Y) is the most straightforward to interpret
- When building a model:
 - Choose a transformation and build the model on the transformed data
 - Reassess the residual plots
 - If the residuals plots did not sufficiently improve, try a new transformation!

Log transformation on Y

If we apply a log transformation to the response variable, we want to estimate the parameters for the model...

$$\widehat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Log transformation on Y

If we apply a log transformation to the response variable, we want to estimate the parameters for the model...

$$\widehat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 X$$

We want to interpret the model in terms of y not log(Y), so we write all interpretations in terms of

$$y = \exp\{\hat{\beta}_0 + \hat{\beta}_1 X\} = \exp\{\hat{\beta}_0\}\exp\{\hat{\beta}_1 X\}$$

Mean and logs

Suppose we have a set of values

x < -c(3, 5, 6, 8, 10, 14, 19)

Mean and logs

Suppose we have a set of values

x < -c(3, 5, 6, 8, 10, 14, 19)

Let's calculate log(x)

log_x <- log(x)
mean(log_x)</pre>

[1] 2.066476

Mean and logs

Suppose we have a set of values

x < -c(3, 5, 6, 8, 10, 14, 19)

Let's calculate log(x)

Let's calculate $log(\bar{x})$

log_x <- log(x)
mean(log_x)</pre>

[1] 2.066476

xbar <- mean(x)
log(xbar)</pre>

[1] 2.228477

Median and logs

$$x < -c(3, 5, 6, 8, 10, 14, 19)$$

Median and logs

$$x < -c(3, 5, 6, 8, 10, 14, 19)$$

Let's calculate Median(log(x))

log_x <- log(x)
median(log_x)</pre>

[1] 2.079442

Median and logs

x < -c(3, 5, 6, 8, 10, 14, 19)

Let's calculate $Median(log(x))$

log_x <- log(x)
median(log_x)</pre>

[1] 2.079442

Let's calculate log(Median(x))

```
median_x <- median(x)
log(median_x)</pre>
```

[1] 2.079442

Mean, Median, and log

Mean, Median, and log

 $\log(x) \neq \log(\bar{x})$

mean(log_x) == log(xbar)

[1] FALSE

Mean, Median, and log

 $\log(x) \neq \log(\bar{x})$

mean(log_x) == log(xbar)

```
## [1] FALSE
```

Median(log(x)) = log(Median(x))

```
median(log_x) == log(median_x)
```

[1] TRUE

Mean and median of log(Y)

• Recall that $y = \beta_0 + \beta_1 x_i$ is the **mean** value of y at the given value x_i . This doesn't hold when we log-transform y

Mean and median of log(Y)

• Recall that $y = \beta_0 + \beta_1 x_i$ is the **mean** value of y at the given value x_i . This doesn't hold when we log-transform y

The mean of the logged values is not equal to the log of the mean value. Therefore at a given value of x

 $\exp\{\operatorname{Mean}(\log(y))\} \neq \operatorname{Mean}(y)$ $\Rightarrow \exp\{\beta_0 + \beta_1 x\} \neq \operatorname{Mean}(y)$

Mean and median of log(y)

 However, the median of the logged values is equal to the log of the median value. Therefore,

$$\exp{\text{Median}(\log(y))} = \text{Median}(y)$$

Mean and median of log(y)

 However, the median of the logged values is equal to the log of the median value. Therefore,

 $\exp{\text{Median}(\log(y))} = \text{Median}(y)$

 If the distribution of log(y) is symmetric about the regression line, for a given value x_i,

Median(log(y)) = Mean(log(y))

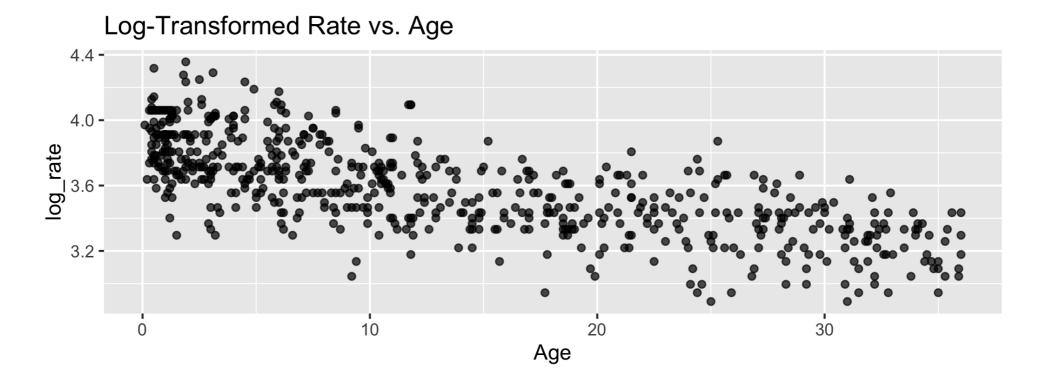
Interpretation with log-transformed *y*

• Given the previous facts, if $\widehat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 x$, then

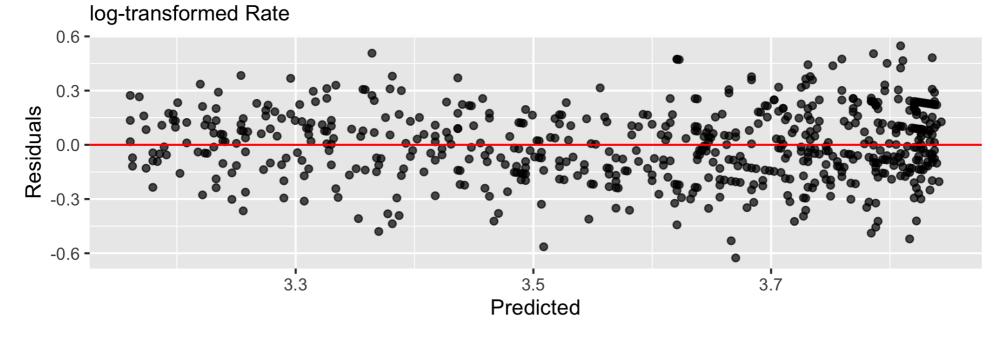
 $Median(\hat{Y}) = \exp\{\hat{\beta}_0\} \exp\{\hat{\beta}_1 x\}$

• Intercept: When X = 0, the median of Y is expected to be $\exp\{\hat{\beta}_0\}$

• Slope: For every one unit increase in X, the median of Y is expected to multiply by a factor of $\exp\{\hat{\beta}_1\}$



Residuals vs. Predicted



term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

Intercept: The median respiratory rate for a new born child is expected to be 46.759 (exp{3.845}) breaths per minute.

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

Intercept: The median respiratory rate for a new born child is expected to be 46.759 (exp{3.845}) breaths per minute.

Slope: For each additional month in a child's age, the respiratory rate is expected to multiply by a factor of 0.981 (exp{-0.019}).

Confidence interval for β_j

 The confidence interval for the coefficient of X describing its relationship with log(Y) is

$$\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)$$

Confidence interval for β_j

 The confidence interval for the coefficient of X describing its relationship with log(Y) is

$$\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)$$

• The confidence interval for the coefficient of *x* describing its relationship with *Y* is

$$\exp\left\{\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)\right\}$$

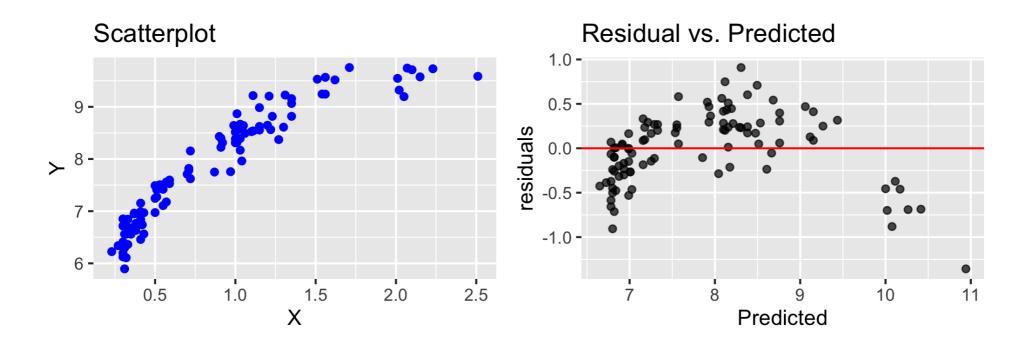
Coefficient of Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	3.845	0.013	304.500	0	3.82	3.870
Age	-0.019	0.001	-25.839	0	-0.02	-0.018

We are 95% confident that for each additional month in age, the respiratory rate will multiply by a factor of 0.98 to 0.982 (exp{-0.02} to exp{-0.018}).

Log transformation on the predictor

Log Transformation on X



Try a transformation on X if the scatterplot shows some curvature but the variance is constant for all values of X

Model with Transformation on X

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \log(X)$$

Model with Transformation on X

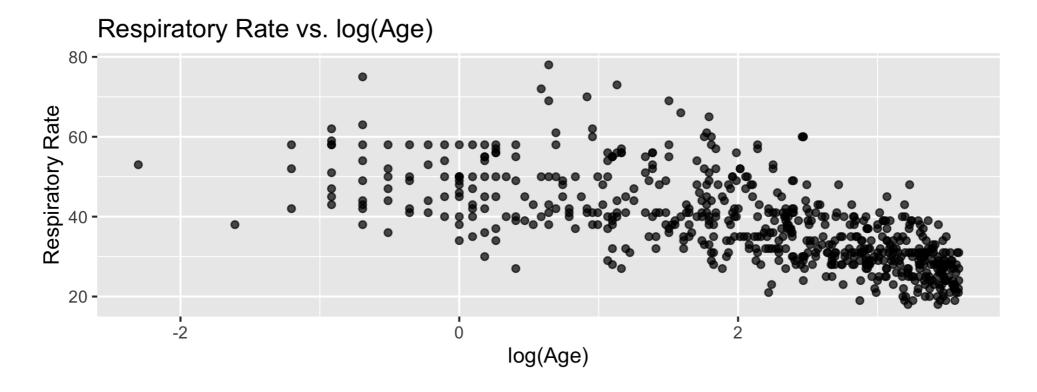
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \log(X)$$

• Intercept: When $\log(X) = 0$, (X = 1), Y is expected to be $\hat{\beta}_0$ (i.e. the mean of y is $\hat{\beta}_0$)

Model with Transformation on X

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \log(X)$$

- Intercept: When $\log(X) = 0$, (X = 1), Y is expected to be $\hat{\beta}_0$ (i.e. the mean of y is $\hat{\beta}_0$)
- Slope: When *X* is multiplied by a factor of **C**, the mean of *Y* is expected to change by $\hat{\beta}_1 \log(\mathbf{C})$ units
 - *Example*: when X is multiplied by a factor of 2, y is expected to change by $\hat{\beta}_1 \log(2)$ units



term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.135	0.632	79.330	0	48.893	51.376
log_age	-5.982	0.263	-22.781	0	-6.498	-5.467

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.135	0.632	79.330	0	48.893	51.376
log_age	-5.982	0.263	-22.781	0	-6.498	-5.467

Intercept: The expected (mean) respiratory rate for children who are 1 month old (log(1) = 0) is 50.135 breaths per minute.

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.135	0.632	79.330	0	48.893	51.376
log_age	-5.982	0.263	-22.781	0	-6.498	-5.467

Intercept: The expected (mean) respiratory rate for children who are 1 month old (log(1) = 0) is 50.135 breaths per minute.

Slope: If a child's age doubles, we expect their respiratory rate to decrease by 4.146 (-5.982*log(2)) breaths per minute.

See <u>Log Transformations in Linear Regression</u> for more details about interpreting regression models with log-transformed variables.

Recap

- Log transformation on the response
- Log transformation on the predictor

