Variable transformations

Prof. Maria Tackett



file:///Users/mt324/Box%20Sync/Home%20Folder%20mt324/Sync/teaching/sta210-fa20/website/static/slides/11-transformations.pdf
https://github.com/sta210-sp20/supplemental-notes/blob/master/log-transformations.pdf

Click here for PDF of slides



file:///Users/mt324/Box%20Sync/Home%20Folder%20mt324/Sync/teaching/sta210-fa20/website/static/slides/11-transformations.pdf

Topics
= | og transformation on the response

= | og transformation on the predictor
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Respiratory Rate vs. Age

= A high respiratory rate can potentially indicate a respiratory
infection in children. In order to determine what indicates a "high"
rate, we first want to understand the relationship between a child's
age and their respiratory rate.

= The data contain the respiratory rate for 618 children ages 15 days
to 3 years.

= Variables:

= Age: age in months

= Rate: respiratory rate (breaths per minute)



Rate vs. Age
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Rate vs. Age

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 47.052 0.504 93.317 0O 46.062 48.042
Age -0.696 0.029 -23.684 0 -0.753 -0.638

residuals




Log transformation on the response



Need to transform Y

= Typically, a "fan-shaped" residual plot indicates the need for a
transformation of the response variable y

= |og(Y) is the most straightforward to interpret



Need to transform Y

= Typically, a "fan-shaped" residual plot indicates the need for a
transformation of the response variable y

= |og(Y) is the most straightforward to interpret

= When building a model:

m Choose a transformation and build the model on the
transformed data

= Reassess the residual plots

= |f the residuals plots did not sufficiently improve, try a new
transformation!



Log transformation on Y

= |[f we apply a log transformation to the response variable, we want
to estimate the parameters for the model...

108/(\1/) =,30 +,31X



Log transformation on Y

= |[f we apply a log transformation to the response variable, we want
to estimate the parameters for the model...

102%/(\Y) =,3o + 5 X

= We want to interpret the model in terms of y not log(Y), so we
write all interpretations in terms of

y = eXP{ﬁo +,31X} = exp{,@o} CXP{%X}



Mean and logs

Suppose we have a set of values

x <- ¢(3, 5, 6, 8, 10, 14, 19)
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Mean and logs

Suppose we have a set of values

x <- ¢(3, 5, 6, 8, 10, 14, 19)

Let's calculate log(x)

log_x <- log(x)
mean(log_x)

## [1] 2.066476
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Mean and logs

Suppose we have a set of values

x <- ¢(3, 5, 6, 8, 10, 14, 19)

Let's calculate log(x)

log_x <- log(x)
mean(log_x)

## [1] 2.066476

Let's calculate log(x)

xbar <- mean(x)
log(xbar)

## [1] 2.228477
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Median and logs

x <- ¢(3, 5, 6, 8, 10, 14, 19)
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Median and logs

x <- ¢(3, 5, 6, 8, 10, 14, 19)

Let's calculate Median(log(x))

log_x <- log(x)
median(log_x)

## [1] 2.079442
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Median and logs

x <- ¢(3, 5, 6, 8, 10, 14, 19)

Let's calculate Median(log(x))

log_x <- log(x)
median(log_x)

## [1] 2.079442

Let's calculate log(Median(x))

median_x <- median(x)
log(median_x)

## [1] 2.079442
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Mean, Median, and log
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Mean, Median, and log

log(x) # log(%)

mean(log_x) == log(xbar)

## [1] FALSE
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Mean, Median, and log

log(x) # log(%)

mean(log_x) == log(xbar)

## [1] FALSE

Median(log(x)) = log(Median(x))
median(log_x) == log(median_x)

## [1] TRUE
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Mean and median of log(Y)

» Recall thaty = fg + f1x; is the mean value of y at the given value
x;. This doesn't hold when we log-transform y
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Mean and median of log(Y)

» Recall thaty = fg + f1x; is the mean value of y at the given value
x;. This doesn't hold when we log-transform y

= The mean of the logged values is not equal to the log of the mean
value. Therefore at a given value of x

exp{Mean(log(y))} # Mean(y)

= exp{fo + p1x} # Mean(y)
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Mean and median of log(y)

= However, the median of the logged values is equal to the log of the
median value. Therefore,

exp{Median(log(y))} = Median(y)
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Mean and median of log(y)

= However, the median of the logged values is equal to the log of the
median value. Therefore,

exp{Median(log(y))} = Median(y)

= |f the distribution of log(y) is symmetric about the regression line,
for a given value x;,

Median(log(y)) = Mean(log(y))
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Interpretation with log-transformed y

A

= Given the previous facts, if log(Y) = ,30 + ﬁlx, then

Median(Y) = exp{f,} exp{/}, x}

= Intercept: When X = (0, the median of Y is expected to be exp{ﬁo}

= Slope: For every one unitincrease in X, the median of Y is expected
to multiply by a factor of exp{f }
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log(Rate) vs. Age

Log-Transformed Rate vs. Age
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log(Rate) vs. Age

Residuals vs. Predicted
log-transformed Rate
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log(Rate) vs. Age

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 3.845 0.013 304.500 0 3.82 3.870
Age -0.019 0.001 -25.839 0 -0.02 -0.018
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log(Rate) vs. Age

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 3.845 0.013 304.500 0 3.82 3.870
Age -0.019 0.001 -25.839 0 -0.02 -0.018

Intercept: The median respiratory rate for a new born child is expected
to be 46.759 (exp{3.845}) breaths per minute.
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log(Rate) vs. Age

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 3.845 0.013 304.500 0 3.82 3.870
Age -0.019 0.001 -25.839 0 -0.02 -0.018

Intercept: The median respiratory rate for a new born child is expected
to be 46.759 (exp{3.845}) breaths per minute.

Slope: For each additional month in a child's age, the respiratory rate is
expected to multiply by a factor of 0.981 (exp{-0.019}).
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Confidence interval for f;

» The confidence interval for the coefficient of X describing its
relationship with log(Y) is

A AY
p; £ 1" SE(f))
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Confidence interval for f;

» The confidence interval for the coefficient of X describing its
relationship with log(Y) is

A AY
p; £ 1" SE(f))

= The confidence interval for the coefficient of x describing its
relationship with Y is

exp {,31 + t*SE(/%—)}
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Coefficient of Age

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 3.845 0.013 304.500 0 3.82 3.870
Age -0.019 0.001 -25.839 0 -0.02 -0.018

We are 95% confident that for each additional month in age, the
respiratory rate will multiply by a factor of 0.98 to 0.982 (exp{-0.02} to
exp{-0.018}).



Log transformation on the predictor
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Log Transformation on X

Scatterplot
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Try a transformation on X if the scatterplot shows some curvature but
the variance is constant for all values of X



Model with Transformation on X

Y = By + B log(X)
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Model with Transformation on X

Y = By + B log(X)

= Intercept: When log(X) = 0, (X = 1), Y is expected to be ,30 (i.e.
the mean of y is f3y)
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Model with Transformation on X

Y = By + B log(X)

= Intercept: When log(X) = 0, (X = 1), Y is expected to be ,30 (i.e.
the mean of y is f3y)

= Slope: When X is multiplied by a factor of C, the mean of Y is
expected to change by f;1og(C) units

= Example: when X is multiplied by a factor of 2, y is expected to
change by f{10g(2) units
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Rate vs. log(Age)

Respiratory Rate vs. log(Age)
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Rate vs. log(Age)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.135 0.632 79.330 0 48893 51.376
log_age -5.982 0.263 -22.781 0 -6.498 -5.467
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Rate vs. log(Age)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.135 0.632 79.330 0 48893 51.376
log_age -5.982 0.263 -22.781 0 -6.498 -5.467

Intercept: The expected (mean) respiratory rate for children who are 1
month old (log(1) = 0) is 50.135 breaths per minute.
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Rate vs. log(Age)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 50.135 0.632 79.330 0 48893 51.376
log_age -5.982 0.263 -22.781 0 -6.498 -5.467

Intercept: The expected (mean) respiratory rate for children who are 1
month old (log(1) = 0) is 50.135 breaths per minute.

Slope: If a child's age doubles, we expect their respiratory rate to
decrease by 4.146 (-5.982*log(2)) breaths per minute.
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See Log Transformations in Linear Regression for more details about
interpreting regression models with log-transformed variables.
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Recap

» Log transformation on the response

= | og transformation on the predictor
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